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Abstract
The current article introduces lagged multidimensional recurrence quantification analysis. The method is an
extension of multidimensional recurrence quantification analysis and allows to quantify the joint dynamics
of multivariate time series and to investigate leader–follower relationships in behavioral and physiological
data. Moreover, the method enables the quantification of the joint dynamics of a group, when such leader–
follower relationships are taken into account. We first provide a formal presentation of the method, and then
apply it to synthetic data, as well as data sets from joint action research, investigating the shared dynamics of
facial expression and beats-per-minute recordings within different groups. A wrapper function is included,
for applying the method together with the “crqa” package in R.

Translational Abstract
This article introduces a new method to discover time lags between multiple observed time series. In a data
set of multiple time series that are related to each other, some of these time series might lead or follow the
others at a certain lag (i.e., a certain number of data points). Lagged multidimensional recurrence quantifi-
cation analysis, the method presented here, allows to investigate whether there are lags between the different
time series, and how long these lags are. This can be used to determine which time series are leading and
which time series are following. The method is particularly suited for situations where there are more
than two time series, for which pairwise comparisons are potentially difficult and lead to a large number
of pairwise comparisons.

Keywords: multidimensional recurrence quantification analysis, leader–follower dynamics, multivariate
time series, joint action
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Joint action research has been drawing the attention of various
research fields, with an ever-growing number of time-domainmeasure-
ments. Aiming to capture the degree of coupling or synchrony, tempo-
ral or rhythmic coordination between different processes, within
bivariate and multivariate systems, most current studies quantify syn-
chrony by utilizing dyad-oriented methods, namely cross-correlation
(Mayo et al., 2021), phase-locking (Lumsden et al., 2012), or cross-
recurrence quantification analysis (Mccamley et al., 2017). Moreover,
several methods have been proposed to capture time-delayed interac-
tions (Ma et al., 2017; Wessel et al., 2009; Ye et al., 2015).
However, not manymethods for the analysis of multivariate time series
are readily available. One prominent exception is multidimensional
recurrence quantification analysis (MdRQA; Wallot, Mitkidis, et al.,
2016; Wallot, Roepstorff, & Mønster, 2016), which evaluates patterns
of temporal coordination in data sets withmore than twovariableswith-
out making assumptions about the distribution of the data or a function
that needs to be fitted to the data. It includes several levels of analysis
beyond the dyadic level, which represents only a portion of the infor-
mation on coupling in groups larger than two, as it does not rely strictly
on splitting a group into all its possible dyads.
MdRQA, a recurrence-based method assesses degrees of recurrence

(or similarity) among systems comprised of two or more time series.
Like its basic univariate version—recurrence quantification analysis
(RQA) (C. L.Webber&Zbilut, 1994)—MdRQAprovides several out-
come measures to quantify different aspects of correlation or coupling
(see the Method section). In the cognitive and social sciences, physiol-
ogy research, as well as medical engineering, MdRQAwas applied to
evaluate levels of coordination in complex systems, such as interper-
sonal synchrony in motion, heart rate, and electrodermal activity
(Dindar et al., 2019; Gordon et al., 2021; Laudańska et al., 2022; Li
et al., 2020). However, it is known that intraindividual processes
(e.g., Triedman & Saul, 1994), as well as interindividual processes
(e.g., Müller & Lindenberger, 2011; Richardson & Dale, 2005), are
not always coupled at lag0 (co-occurring synchrony, i.e., doing the
same thing at exactly the same time), but rather that there are leader–
follower relationships between different cognitive and physiological
processes or between members of a group. Currently, however,
MdRQA can only be used to evaluate the common, multidimensional
dynamics of multivariate time series at lag0, and extensions of the
method have been called for that allow the investigation of time-shifted
dynamics within a multidimensional signal (Schiepek et al., 2020)—a
nonparametric equivalent to the linear approach outlined via cross-
correlation functions (Boker et al., 2002).
To overcome this limitation, we here propose an extension of

MdRQA, lagged MdRQA, which allows determining leader–
follower relationships within a set of multivariate time series. This
extension of MdRQA allows one or more time series to vary in their
relative position to the other time series, and by that, it quantifies inter-
actions in multivariate systems that do not necessarily occur at the same
time (lag0).
Previous research has utilized the relative lag information of multi-

variate time series to enhance the embedding process, resulting in a
more accurate representation of the phase-space profile (e.g., Garcia
& Almeida, 2005; Hirata et al., 2006; Pecora et al., 2007). Note, how-
ever, that the goal of laggedMdRQA as proposed here is different: The
method is not about optimizing phase-space reconstruction using
lagged time series—indeed, it is not even necessarily desirable to fur-
ther embed themultivariate time series at all for the purposes of the pre-
sented application here. Rather, the aim is to find states of maximum

(or minimum) coupling within a multivariate data set by shifting the
relative lag of the component time series, and by that, finding
leader-and-follower profile for the individual component time series
within the multivariate set.

For instance, a and b are two time series each consisting of three data
points. If b follows awith one data point lag, we expect to find themax-
imum correlation between a1, a2, and b2, b3. Standard MdRQAwould
not detect this interaction, but the lagged version would peak at a lag of
1 for b (see further explanation in Example 3). Such leader–follower
relations can be computed by other methods, for example, windowed
cross-correlation (Konvalinka et al., 2010) or a diagonal-based analysis
of cross-recurrence plots (RPs; Kodama et al., 2018); however, those
are aimed at pairwise relations. One other alternative would be to
extend the method presented by Romano et al. (2005), who use joint
recurrence to investigate lagged behavior time series data with two
RPs. It would be possible to multiply more than two of such plots
for multivariate time series, but the application is not as straightfor-
ward, mainly due to the fact that in such an analysis, the sparsest
plot dictates the amount of recurrence (i.e., lagged correlation),
which likely distorts the resulting lag profile (see Wallot, Mitkidis, et
al., 2016; Wallot, Roepstorff, & Mønster, 2016).

By applying laggedMdRQA, a researcher is provided with a basis
to inspect which lag or difference in position yields the highest sim-
ilarity among their multivariate data set, taking into account the
higher order relationships between those time series. Moreover, com-
pared to the application of bivariate analyses, lagged MdRQA pro-
duces much smaller outcome parameters than an exhaustive
bivariate analysis. If v is the number of variables to be correlated,
then a bivariate analysis of this set of variables yields n= v(v+ 1)/
2 different correlation coefficients from which the lag structure—
and then leader–follower relationships—of the multidimensional
time series needs to be computed. In contrast, lagged MdRQA pro-
vides only n= v number of different lags (one from each time series),
a much more manageable number. From these lags, it can directly be
observed, which of the variables leads the system, which of them fol-
lows, and by how many lags.

To sum up, lagged MdRQA is a novel extension of MdRQA that
would be suitable to indicate time-delayed coordination inmultivariate
time series. It makes no strong assumptions about the data and, com-
pared to bivariate approaches, leads to a more manageable number of
leader–follower lag parameters. Hence, it is well suited to evaluate
behavioral and physiological leader–follower relationships in groups.

Lagged MdRQA

Lagged MdRQA is based on simple MdRQA (Wallot, Mitkidis,
et al., 2016; Wallot, Roepstorff, & Mønster, 2016), which in turn
is a variation based on the classical RQA (Marwan et al., 2007;
C. L. Webber & Zbilut, 1994). RQA is based on RPs (Eckmann
et al., 1987), which can be calculated from a single observable x
(Equation 1):

x = (x1, x2, x3, . . . , xn), (1)

where x is a vector with values x1 to xn representing the number
of data points, n, of the time-ordered data of the variable x.
Based on the values of x, a distance matrix can be computed
(Equation 2):

DMi, j = ‖xi − xj‖, with i, j = 1, . . . , n, (2)
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where x corresponds to the time series of data, N is the length of the
time series (i.e., the number of data points of x), and || || indicates a
norm. This distance matrix is then discretized into a binary matrix
by a threshold parameter r to define the RP (Equation 3):

RP = Q(r − DM), (3)

where Θ represents the Heavyside step function, r is the threshold
parameter, and DM corresponds to the distance matrix as defined
above. Of course, the DM can be—and often is—computed on the
phase-space profile of x, which can be obtained by the method of time-
delayed embedding (Mañé, 1981; Takens, 1981)—aswell as improved
techniques as briefly mentioned in the introduction.
MdRQA extends RQA by allowing the use of additional mea-

sured variables from the system under study to be used as dimen-
sions in phase space in two manners. If all relevant phase-space
dimensions were measured, then there is no further need to embed
the data. Admittedly, this case rarely occurs with empirical human
data (or there will always be some uncertainty left of whether all
dimensions have actually been measured in a particular case).
Alternatively (and this case is more prominent with empirical
data), D-measured variables are relevant and each carries additional
information with regard to the phase-space profile, but some vari-
ables or some information could not be empirically obtained, so
embedding is still necessary, albeit to a smaller degree (see Wallot
& Mønster 2018, and the synthetic and experimental examples in
this article). Hence, instead of quantifying the dynamics of a
D-dimensional system from a single observable, MdRQA allows
us to quantify the dynamics by using (up to) D observables y1, y2,
… yD to construct the phase space:

W =

W1

W2

..

.

Wn

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠ =

y1,1 y2,1 . . . yD,1
y1,2 y2,2 . . . yD,2

..

. ..
. ..

.

y1,n y2,n . . . yD,n

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠, (4)

where Wi is the D-dimensional vector consisting of the D observ-
ables measured from the system sampled at time ti. The elements
of the matrix W are thus multidimensional coordinates W over
time from 1 to n, where y1,1 is the value of the first measured observ-
able y at Time 1, yD,1 is the Dth measured observable at Time 1, and
yD,n is the nth measured observable at the last measured time n.
Analogous to RQA, the observables could be reconstructed using

time-delayed embedding into D-times-d dimensional phase space,
where d is the embedding parameter. Estimating the delay and embed-
ding parameters is done by finding the first local minimum of the mul-
tidimensional versions of AMI function, which estimates the delay
parameter for embedding, and then subsequently the first local mini-
mum (or elbow) if the FNN function, which provides an estimate of
the embedding dimension parameter. This has been implemented
for multivariate time series (Wallot & Mønster, 2018) and can be
applied using MATLAB (The MathWorks Inc.) or R (R Core
Team, 2023). For a more detailed tutorial on how to estimate these
parameters step by step, see Wallot and Leonardi (2018).
Even though phase-space reconstruction might yield a better pic-

ture of the multidimensional systems’ dynamics in phase space, the
estimated delay parameter for embedding might depend on how the
differend component time series are lagged with regard to one
another. Hence, embedding might not always be the best default

choice for this particular application of RQA, depending on the
research question at hand. Hence, embedding might not be the
best default choice for this particular application of RQA.

As shown above, the different values of the observables y can now
be treated as coordinates in phase space over time, and an RP can be
computed based on these coordinates using the coordinate matrixW
instead of the univariate time series x, and Equations 2 and 3. Then,
the distance matrix is binarized according to the threshold parameter
r. It has been recommended to modify the threshold parameter to
yield a percentage recurrence (%REC) ranging from 1% to 5%
(C. Webber & Zbilut, 2005).

RPi, j = Q(r − ‖Wi −Wj‖), with i, j = 1, . . . , n. (5)

This gives us the definition of the RP in classical MdRQAwith all
observables entering at lag0 (Wallot, Mitkidis, et al., 2016; Wallot,
Roepstorff, & Mønster, 2016). In order to investigate time-lagged
behavior among the observables in W, after we reconstruct the
data in the same manner as MdRQA, we can now lag individual
observables y before they enter the common phase space, and the
RP is calculated. To do so, one needs to define a maximum lag
ml, which is the range of lags (as with bivariate diagonal cross
RPs; Dale et al., 2011) that should be investigated.

To illustrate this, let us assume we have a three-dimensional time
series with three data points each. Its distance matrix is depicted in
Figure 1. Furthermore, let us assume we have set the maximum
lag ml= 1 (i.e., lags of 0 and 1). This means that we are interested
in investigating the recurrence measures if one or two of the time
series are leading or lagging the other time series by a lag of 1.

In this case, for D= 3 (with three empirical observables) and
ml= 1, we end up having (ml + 1)D= 23= 8 different RPs, as com-
puted using Equation 5, each of which can be quantified with the
standard RQA measures (Marwan et al., 2007; Wallot, Roepstorff,
& Mønster, 2016). From this, a few practical observations are dis-
cussed in the following.

First, the lag parameter ml needs to be set to an appreciably
smaller value compared to the length of the multidimensional data
vector W, so that a reliable computation of recurrence measures
across lag combinations remains viable. Moreover, one needs to
keep in mind that additional data points might be lost if the multidi-
mensional time series W is further embedded.

Second, computation time grows as a power law with ml, because
of the increase in the number of to-be-computed RPs with each addi-
tional lag. Figure 2 examines the computation time of lagged
MdRQA on a single multidimensional time series and its depend-
ency on the length of the time series, the number of variables within
it, and the maximum lag. The embedding dimension varied between
one, two, four, and eight but was not significantly associated with the
computation time when controlling for the other aforementioned
variables, Spearman’s r(238)= .058, p= .378. As illustrated, the
computation time rises as one uses a higher ml. Additionally, it is
positively associated with the size (number of variables and length)
of the time series.

Third, some of the lag combinations are likely superfluous for suf-
ficiently long time series, such as computing recurrence measures
with all dimensions shifted by a lag of 1 (Figure 1h) and all comput-
ing recurrence measures when none of the dimensions are shifted
(i.e., all at lag0; see Figure 1a). Such doublets can be removed to
decrease computation time.
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If we remove the superfluous lag combination where all dimen-
sions are shifted by a lag of 1 (i.e., Figure 1h), we end up with
seven different lag combinations in our example, for which we can
compute RPs and derive recurrence measures.
Depending on the data type, laggedMdRQA can be conducted on

relatively short (10–30) time series, particularly if these are nominal
sequences. On the other hand, a more stochastic time series usually
requires more data points, but this always depends on the dynamics
of the data or the strength of effect size. In principal, the methods
could be conducted with as few as three data points, even though
such an application rarely makes sense. Of course, the length of
the time series also constrains the lag size that can be investigated.
Generally, reliability increases with length as long as the sampling
rate and observation period are adequate for the phenomenon of
interest.
While there is no maximum length, the computation time depends

on the number of data points and variables, as well as the ml as
shown in Figure 2. Here, the “crqa” package in R was used with a
single core. Parallel computation would speed up the process, of
course, and there are faster implementations of RQA in other lan-
guages (e.g., Rawald et al., 2014), which might be important if a
long time series or a large number of lags is investigated.
Regarding applications to joint action research, the results can

now be used in several ways: If we are interested in finding the high-
est coherence of the group dynamics within the given maximum lag
ml, we can now pick the maximum value of the recurrence measure
of interest (e.g., percent recurrence) as the strength of coupling or
synchrony of that group to compare it to other groups or conditions.

Conversely, if we have a hypothesis about who (i.e., which compo-
nent of the multivariate signal) is leading, we can investigate the
combinations of lags that are associated with the highest values of
the recurrence measure of interested (e.g., maximum percent recur-
rence) and how to find out which leader–follower profile exists at
this peak. Also, we can investigate the magnitude of recurrence mea-
sures of interest comparing specific, predefined lags—for example,
if we are interested in whether there are leader–follower relationships
in a group, we can investigate whether there are any higher recur-
rence measures at any of the lag combinations that exceed the
value at lag0 for all components of the multidimensional time series.
Of course, there might be further ways in which the lagged recur-
rence profile can be used.

In the following, wewill now apply the analysis to simple systems
and empirical data from group interactions to illustrate the usage of
the laggedMdRQA procedure. For clarity, wewill specify the lags in
integers representing the number of data points.

Data Availability

The functions for lagged MdRQA and the generated data used in
this article can be accessed at https://osf.io/sk8ce/ and https://github
.com/alontom/Lagged-MdRQA.

Example Synthetic Data

Our first evaluations of the method utilized synthetic data. First, we
generated a three-variate time series (TS1, TS2, and TS3) consisting

Figure 1
Euclidean Distance Matrices of a Three-Dimensional Time Series With Three Data Points Each

Note. (a) Standard, nonlagged matrix. (b) Distance matrix with y1 shifted by a lag of 1. (c) Distance matrix
with y2 shifted by a lag of 1. (d) Distance matrix with y3 shifted by a lag of 1. (e) Distance matrix with y1 and
y2 shifted by a lag of 1. (f) Distance matrix with y1 and y3 shifted by a lag of 1. (g) Distance matrix with y2
and y3 shifted by a lag of 1. (h) Distance matrix with y1, y2, and y3 each shifted by a lag of 1. DM= distance
matrix.
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of white noise drawn from a standard normal distribution (500 data
points). Then, we varied the lags at which variable TS1 showed cor-
relations with variables TS2 and TS3 between zero and five data
points (i.e., the set lag) and produced 100 iterations for each lag.
The variables were defined as follows (Equation 6):

TS1(t) � N(0, 1),

TS2 = TS1(t − SL)+ N(0, 0.1),

TS3 = TS1(t − SL)+ N(0, 0.1),

(6)

whereN(M, SD)= normal distributions with mean and standard devi-
ation, SL= set lag (integers ranging from 0 and 5).
Moreover, we simulated an additional set of data where all the time

series—TS1, TS2, and TS3—were all uncorrelated with each other.
Lagged MdRQA was performed in R using RStudio and a wrap-

per function (see Data Availability section) utilizing the crqa func-
tion in the R package “crqa” (Coco & Dale, 2014; Wallot, 2019)
to assess the set of lags that yields the highest recurrence rate (%
REC). As the data were just instances of I.D.D. noise, and did not
exhibit higher dimensional dynamics, we chose a delay and embed-
ding parameters of 1 and a threshold of 0.6. Using the lagged
MdRQA procedure described above, the max lag (ml) was set to
the set lag plus 2 between the time series (which varied between 0
and 5) to reasonably cover the temporal window within which
leader–follower relationships were to be expected.

Figure 3 demonstrates the %REC when TS1 is lagging both, TS2
and TS3 at a set lag of 5, while TS2 and TS3 are aligned at a relative
lag of 0 with regard to each other. In Figure 3, we see that TS2 and
TS3 are each most strongly coupled at a lag of zero, indicated by the
diagonal of increased %REC running from the center bottom to the
center top of the plot. Moreover, we can see that each of these is most
strongly coupled to TS1 at a lag of 5 and that thewhole system exhib-
its the highest amount of recurrences when TS1 is at a lag of 5 rela-
tive to both, TS2 and TS3, while TS2 and TS3 are relative to each
other at lag 0 (the bright dot where the lines are meeting). Such visu-
alization is, however, only possible for fewer than four time series.

Furthermore, we compared the results for MdRQA to an alterna-
tive approach using joint-recurrence quantification analysis (JRQA;
Marwan et al., 2007) on multiple RPs, as joint recurrence plots
(JRPs) have been utilized in evaluating the coupling characteristic
in the Lorenz equation system (Zou et al., 2011). In order to do
so, we calculated a single RP for each of the three time series A,
B, and C using the same embedding parameter. Then, to produce
a JRP, we multiplied the three recurrence matrices of A, B, and C
(element-wise multiplication; Equation 8):

JRP = RPTS1×RPTS2×RPTS3. (7)

This JRP was then quantified in terms of %REC. This was done
for all lag combinations of set lag plus 2 as described above, to

Figure 2
Each Subplot Represents the Computation Time of LaggedMdRQA on aMultidimensional Time Series With Different Lengths as a Function
of the Maximum Lag

Note. In addition, the number of variables within the time series is indicated by gray scale. The simulations were performed using RStudio (RStudio Team,
2023) on a Mac Pro 2019 computer equipped with a 3.2 GHz, 16-core Intel Xeon W processor, 32 GB of 2,933 MHz DDR4 memory, and operating on OS
11.6. MdRQA=multidimensional recurrence quantification analysis.
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capture the set of lags yielding the highest %REC and repeated this
analysis to observe the differences between the methods. In addition,
we produced a second, uncorrelated, set of data.
When there is a relationship between the variables, we hypoth-

esize that the methods will find the observed lag that highlights
this association. That is, the lag for TS1 equals the set lag.
From Figure 4 we can conclude that both methods captured the
set lag by finding the combination of lags yielding the highest
%REC.
To the contrary, if there is no association between the three time

series (i.e., all of them are independent instantiation values drawn
from a standard normal distribution), we hypothesize that there is
no relation between the set lag and the lag at which MdRQA and
JRQA find a maximum of recurrence (within the prespecified max-
imum lag that is investigated).
As can be seen in Figure 5, when there is no relationship between

TS1 and the other variables, there is no systematic relation between
the maximum lag and the lag returned by the analyses—the lags with
maximum %REC are equally distributed across the whole range of
the maximum lag parameters for both analyses.
Accordingly, both MdRQA and the JRQA approach for three RPs

yield similar results, not being able to identify the correct lag at
which one time series (TS1) precedes the others.
To investigate the method on a more deterministic system, we

generated a 500 points sine wave time series (SW1) with additional
Gaussian noise, and two lagged versions of SW1 with added noise
drawn from a normal distribution (SW2, SW3) with 10:1 signal-
to-noise ratio, determining SW1 as the follower of the system
(Figure 6). The prespecified lags between SW1 compared to SW2

and SW3 ranged from zero to five data points (Lag) on every itera-
tion (100 for each lag), as described in Equation 8:

SW1 = Asin(vt),

SW2 = Asin(vt + w)+ 1,

SW3 = Asin(vt + w)+ e,

(8)

where A= amplitude of 1, ω= angular frequency of 1 Hz, t= time,
from 0 to 4 in steps of 0.008, SL= set lag (integers ranging from 0 to 5),
w= phase at t0 of SW2 and SW3 equals to SL× 0.008× 2π,
e = N 0, A/10

√
2

( )
.

Just as with the noise data above, we performed both lagged
MdRQA and JRQA on the z-scored time series to find the sets of
lags yielding the highest %REC setting the max lag (ml) to the actual
lag plus 2 to capture the leader–follower relationships given that
noise was added to the data. For MdRQA, we used the parameter set-
tings of delay and embedding dimension= 1, and a threshold of 0.6,
For JRQA, we used the parameter settings of delay= 30, embedding
dimension= 2, and a threshold of 0.6 and used the maximum norm.

We used these different parameter settings because the analysis
takes a different perspective on the data: In terms of its dynamics,
a (perfect) sine wave can be seen as a two-dimensional object—a
perfectly repeating cycle in time. Accordingly, if we have a one-
dimensional observable that comes from a two-dimensional system,
we would consider to perform phase-space reconstruction to capture
its higher dimensional dynamics (see Marwan et al., 2007; C.
Webber & Zbilut, 2005). As the joint recurrence method starts
with three individual RPs from three one-dimensional data series

Figure 3
AThree-Dimensional Scatter Plot Representing the Observed%RECof Every Lag Combination
With a Set Lag of 5 for TS1 and No Lag Between TS2 and TS3

Note. %REC= percent recurrence; TS1= time series 1; TS2= time series 2; TS3= time series 3.
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